
Brian Bradford
Jared Danner

Nick Knuth
Vishal Joel

Louis Hamilton

SDMay19-41

High-Level Requirements

● Porting of the CASPER spectrometer application to the ZCU111 and RFSoC

● Integration of Migen into the CASPER tooflow

● Extending of PYNQ to work with the tooflow

Use Case
● The CASPER community has reached out to developers to integrate Xilinx’s new RFSoC platform into

their current tools. Once supported, anyone making use of their open-source tools will be able to
quickly develop digital instrumentation for their specific applications.

Functional & Non-functional Requirements
● Functional

○ CASPER spectrometer support
■ ZCU111 must be made to support the CASPER spectrometer and the DSP libraries that it is dependent on.

○ Migen
■ Must be able to auto-generate HDL from CASPER modules, create a corresponding Vivado project and

generate a bitstream targeting the ZCU111
○ Spectrometer

■ Parameterized inputs allow users to quickly configure the application for different use cases
● Non-functional

○ Backwards compatibility
■ The ability to still use MATLAB/Simulink and existing CASPER Toolflow along with Migen to program the

board.
○ Open source

■ Anyone can use our code in their application.
○ IEEE Standards

■ 211-1997TM IEEE Standard Definitions of Terms for Radio Wave Propagation
■ 1241-2010TM IEEE Standard of Terminology and Test Methods for Analog-to Digital Converters
■ 802.3TM IEEE Standards for Ethernet

Design Plan
● Designing an ADC, spectrometer, ethernet module to port CASPER’s spectrometer instrument to the

ZCU111.

● The board infrastructure was designed using Migen and PYNQ.
○ Migen was used as an experimental tool to test whether it would be a viable option to replace the

existing CASPER toolflow.
○ PYNQ interfaced with the modules in order to provide register software access.

● Create a GUI in Jupyter Notebooks to provide an interface for the entire spectrometer application,
which allows for

○ Quick configuration of various spectrometer parameters
○ Effectively display data from various sections of the system

Design Objectives

● Porting of the CASPER spectrometer instrument and dependent libraries to the Xilinx ZCU111
evaluation platform.

○ General board support
○ Ethernet interface
○ ADC interface

● Migrating the current CASPER Toolflow to use Migen, an open source python library for generating and
building gateware projects.

● Support for Xilinx PYNQ infrastructure, which will interface to existing CASPER Python libraries.

● Documentation of project for future users: source code, gateware, and firmware descriptions.

System Constraints

● CASPER spectrometer support
○ ZCU111 board must be made to support the CASPER spectrometer and the libraries it is

dependent on.
● Migen

○ Must be able to auto-generate HDL from CASPER modules, create a corresponding Vivado
project and generate a bitstream targeting the ZCU111

● Backwards compatibility
○ The ability to still use MATLAB/Simulink and existing CASPER Toolflow along with Migen to

program the board.
● Open source

○ Anyone can use our code in their application.
● IEEE

○ 211-1997 IEEE Standard Definitions of Terms for Radio Wave Propagation
○ 1241-2010 IEEE Standard of Terminology and Test Methods for Analog-to Digital Converters
○ 802.3 IEEE Standards for Ethernet

Design Trade-Offs

● Trade-Offs
○ Xilinx specific IP cores in our ethernet and ADC modules
○ Interfacing

■ Migen to interface between each subcomponent
■ Jupyter Notebook as our GUI.

● Resulting Actions
○ Xilinx IP

■ Decreased time to develop because the Xilinx IP due to modification
■ Reduces the effectiveness of our overall project in CASPER’s open-source environment.

○ Migen
■ Swapping out a proven & known project compilation for an unproven technology
■ Potentially reduces development time if successful & increases if not

Conceptual Sketch - CASPER spectrometer

Functional Block Diagram

System Architecture

ADC - Design & Implementation

● Purpose & Goal
○ Initial desired spectrum: 0 - 100

MHz

○ Provide In-phase & Quadrature
(I&Q) data to spectrometer

○ Synchronous sampling for all
ADC cores

Sdmay19-41 ADC Design

ADC - Design & Implementation
● System Parameters

○ Sampling Frequency: 256 MHz

○ Multi-Tile Synchronized ADC
Sampling

○ 8-bit I&Q data streams from each
ADC core

○ Driven externally by ZYNQ PS

Xilinx GUI ADC Configuration

Spectrometer - Design & Implementation

● Derived from Polyphase Filterbank-based (PFB) Simulink application for Allen Telescope Array in Northern
California

● Used existing CASPER Toolflow’s Simulink DSP libraries
● Created interactive Jupyter Notebook to simulate various DSP parameters
● Used Xilinx/MATLAB System Generator to generate corresponding HDL code
● Wrapped and instantiated inside of a Migen module with configuration and status registers
● Consulted with Jack Hickish regarding DSP parameters

Ethernet - Design & Implementation

● 10 GbE to 1GbE

● Merging CASPER IP with Xilinx IP

● 8-Bit data stream with 1 Gigabit
speed

● Transmit only

Build Environment - Design & Implementation
● Litex/Migen build environment:

○ Open-source FPGA design/SoC
builder used to create cores and full
FPGA designs.

○ Fully-automated build process
○ CSR Banks/buses
○ CSR-to-AXI4-Lite bridge

● Migen Base Class
○ Common CSR bus for config/status
○ Wishbone Stream input & output

● PYNQ base overlay
○ Exposes 3x AXI4-Lite interfaces
○ Zynq Processing System
○ DMA IP core with AXI4-Stream

*Please chat with me more about this at poster presentation

GUI - Design & Implementation
● Requirements

○ Sample data from the DMA IP core, and plot the
data on Jupyter Notebooks

○ Establish communication between Python
Server and Client process using sockets

○ Send commands from the client process and
respond with sampled data from the DMA IP to
the client

ADC - Testing & Validation
● Verified Xilinx TRD

○ Targeted Reference Design

● Validated target sampling parameters
w/ TRD

● Collected parameter memory offsets
to be tested w/ PYNQ

TRD ADC Data Capture w/ FFT

ADC - Testing & Validation
Xilinx Data Converter IP Parameters

ADC - Risks & Mitigation
● Inability to finish due to:

○ Limited time
○ Lack of expertise
○ Pivot from 8 core ADC design to 2 Core ADC design

● Mitigation of risks
○ Reach out to industry experts for help & guidance

Spectrometer - Testing & Validation

1. Created a Jupyter Notebook to simulate and verify the DSP parameters necessary for 100 MHz
spectrometer design

2. Simulated in Simulink by generating white-noise, injecting a signal and feeding the samples to the fully
implemented spectrometer design made with CASPER’s Simulink/MATLAB DSP libraries

3. Read/write the input/output data for the spectrometer component from/to DMA using PYNQ:
a. Generate a sampled signal using numpy in PYNQ, write to DMA, read from DMA in hardware and

feed to spectrometer HDL
b. Write the spectrum to DMA in hardware, read spectral data from DMA in PYNQ and display plot

to verify

* Was unable to complete #3 as DMA infrastructure was not completed in time

Spectrometer - Testing & Validation
1. 2.

3.

4.

5.

Ethernet - Testing & Validation
● Implementation Choice

● Loopback Testing

● MicroBlaze Testing

● Sample Data Testing

● Current Progress

Ethernet - Risks & Mitigation
● 10 GbE import

● Xilinx IP Licensing

● Using other CASPER IP

● Clocking and IP documentation

Build Environment - Testing & Validation

* Please refer to our demo during the poster presentation this afternoon for more information

GUI - Testing & Validation
● Server and Client

○ Generating signals by passing them to one server thread and the other to a client thread waiting
to verify that data is being transmitted.

○ The client process was tested by verifying data that was set with certain values based on user
input.

○ Control surfaces with a client process to connect to a server process, which would then write to
GPIO control registers.

● Generating signals
○ Numpy was then used to generate signals that will be passed to two FIR filters and the times

compared.

GUI - Risks and Mitigation
● GNURadio (Later switched to Jupyter Notebook)

○ PYNQ readily supports Jupyter Notebook
○ Notebook modules that allow data visualization
○ Easier to configure data using ipywidgets and json for storing configurations
○ Ability to read PYNQ registers through PYNQ modules

● Expertise

● Time

Roles & Responsibilities

● Brian Bradford - FPGA/DSP Engineer
○ Build Environment (Migen/Litex)
○ PYNQ
○ Spectrometer application

● Louis Hamilton - FPGA Engineer and GUI developer
○ GUI design & implementation
○ PYNQ DMA

● Jared Danner - FPGA Engineer
○ ADC Design & Implementation
○ ZCU111 Migen Platform File

● Nick Knuth - FPGA Engineer
○ 1/10 GbE core

● Vishal Joel - GUI Developer and FPGA Engineer
○ GUI design & implementation

Project Schedule - Proposed

Project Schedule - Actual

Lessons Learned
● Time required for FPGA development

● Technical knowledge necessary and gained

● Experience with unfamiliar technology

● Overcoming unforeseen risks and challenges

● Adapting to major changes in design

Conclusions & Future Work
● Were not able to fully implement and test 100 MHz spectrometer on ZCU111

○ Mostly rookie FPGA Engineers
○ Time constraints
○ Unforeseen risks regarding each module (explained earlier)

● Demonstrated potential to migrate to a fully open-source toolflow
○ Automated build environment: Migen and PYNQ

● Substantial leg-work done for creation of CASPERized:
○ ADC core
○ 1 GbE core

● Code to be stored in Brian Bradford’s GitHub & will notify CASPER
community about location and progress

● Half a dozen or more members interested in expanding on our work
● Brian to give talk regarding project at CASPER 2019 conference in Boston

Key Industry Consultants
● Dan Werthimer: Chief Scientist, SETI@Home, UC Berkeley Space Sciences Lab:

danw@ssl.berkeley.edu

● Jack Hickish: Assistant Researcher, UC Berkeley Radio Astronomy Lab:
jackhickish@ssl.berkeley.edu

● Alan Wilson-Langman: Senior Project Engineer, Vermeer Corporation:
awilson-langman@vermeer.com

Advisor
● Dr. Phillip Jones: Associate Professor, Department of Electrical and

Computer Engineering, Iowa State University: phjones@iastate.edu

mailto:danw@ssl.berkeley.edu
mailto:jackhickish@ssl.berkeley.edu
mailto:awilson-langman@vermeer.com
mailto:phjones@iastate.edu

1. Casper-dsp.org. (2018). The Collaboration for Astronomy Signal Processing and Electronics Research. [online] Available at:
http://casper-dsp.org/ [Accessed 23 Oct. 2018].

2. M-labs.hk. (2018). Migen | M-Labs. [online] Available at: https://m-labs.hk/migen/index.html [Accessed 23 Oct. 2018].
3. Readthedocs.org. (2018). PYNQ | Read the Docs. [online] Available at: https://readthedocs.org/projects/pynq/ [Accessed 23 Oct. 2018].I
4. Ieeexplore.ieee.org. (2018). Commissioning and testing of SERENDIP VI instrumentation USNC-URSI national radio science meeting -

IEEE Conference Publication. [online] Available at: https://ieeexplore.ieee.org/document/7436240/ [Accessed 23 Oct. 2018].
5. IEEE Std 211-1997TM IEEE Standard Definitions of Terms for Radio Wave Propagation
6. IEEE Std 1241-2010TM IEEE Standard of Terminology and Test Methods for Analog-to Digital Converters
7. IEEE Std 802.3TM Standards for Ethernet
8. Price, D. (2018). Spectrometers and Polyphase Filterbanks in Radio Astronomy. [online] Arxiv.org. Available at:

https://arxiv.org/abs/1607.03579 [Accessed 23 Oct. 2018].
9. Xilinx.com. (2018). [online] Available at:

https://www.xilinx.com/support/documentation/application_notes/xapp1305-ps-pl-based-ethernet-solution.pdf [Accessed 23 Oct. 2018].
10. Xilinx.com. (2018). Zynq UltraScale+ RFSoC Data Converter. [online] Available at:

https://www.xilinx.com/support/documentation/ip_documentation/usp_rf_data_converter/v2_0/pg269-rf-data-converter.pdf [Accessed 23 Oct.
2018].

11. Hickish, J (2018). Allen Telescope Array: SNAP firmware. [online] Available at: https://github.com/realtimeradio/ata_snap [Accessed 8 Jan.
2019].

12. Price, D (2017). Polyphase filterbanks: an interactive introduction. [online] Available at: https://github.com/telegraphic/pfb_introduction
[Accessed 12 Feb. 2019]

13. fpgadeveloper.com (2018). [online] Available at: http://www.fpgadeveloper.com/2018/03/how-to-accelerate-a-python-function-with-pynq.html
[Accessed 1 Feb. 2019]

References

