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0. Executive Summary 
 
We proposed the development of a wideband full stokes parameterized spectrometer (polarimeter) 
for radio astronomy applications, targeting the Xilinx Zynq RFSoC platform. 
Spectrometers are instruments that measure and record the spectral content of signals, such as 
radio waves received from astronomical sources [8]. Analysis of the output of these instruments 
provides valuable information to radio astronomers, to better understand the celestial radio 
sources. The greater the bandwidth of the spectrometer, the more information available to the 
astronomer, driving the need for new wider bandwidth instruments. However, the progress has 
been limited by the cost, performance and complexity of development such systems.  
CASPER [1], the “Collaboration for Astronomy Signal Processing and Electronic Research” have 
addressed this problem by developing platform independent hardware and open source software to 
take advantage of developments in Field Programmable Gate Array (FPGA) and Analog to Digital 
Convertor (ADC) technology and “quickly” target new platforms such as the Xilinx RFSoC 
evaluation board (ZCU111). 
 
This project focused on the porting of the CASPER spectrometer instrument and dependent 
libraries to the Xilinx ZCU111 evaluation platform. We also trialed improving the board support 
package infrastructure by exemplifying a viable migration from the current CASPER toolflow to 
instead use Migen, an open source python library for generating and building gateware projects [2]. 
The toolchain was extended to support the Xilinx PYNQ infrastructure [3], which could be 
interfaced to existing CASPER Python libraries. 
 

1. Requirements Specification 
 
1.1 HIGH-LEVEL REQUIREMENTS 
 
The high-level requirements of our project are a successful port of a CASPER spectrometer 
application, a trial implementation of Migen to test its viability, and extend the current toolflow to 
use PYNQ. The initial requirement was the main focus of our project as we were testing the ZCU111 
and the RFSoC platform’s viability in CASPER’s toolflow. This included porting existing CASPER IP 
to see whether it worked on Xilinx’s Ultrascale+ architecture and the benefits of the RFSoC as a 
single cohesive system for the entire spectrometer application. The trial implementation in Migen 
was also important to test as a new open-source tool to host the CASPER toolflow. Currently, the 
toolflow uses MATLAB/Simulink, a closed-source application which inhibits the ability for 
everyone to access CASPER’s work. Migen is a newly developed open-source tool for generating 
HDL source code and Vivado project files, that if successful would increase the accessibility of 
CASPER’s tools. The final requirement of extending PYNQ is to provide better functionality with 
Xilinx-specific Zynq boards and to give better software control of the hardware design. It allows for 
software to read the internal hardware devices and registers to configure and receive status data as 
needed. 
 

1.2 USE-CASES 
 
CASPER [1] is a community of hundreds of scientists and engineers around the world, who 
collaborate on the development of radio astronomy instrumentation. The CASPER community has 
reached out to developers to integrate Xilinx’s new RFSoC platform into their current tools. Once 
supported, anyone making use of the open-source tools will be able to quickly develop digital 
instrumentation for their specific applications. 
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Should time allow, we planned to pursue the next iteration of the UC Berkeley SETI Research 
Center’s Search for Extraterrestrial Radio Emissions from Nearby Developed Intelligent Populations 
(SERENDIP) program [4]. This installment would have been the next generation instrument system 
for the Search for Extraterrestrial Intelligence (SETI) coined SERENDIP VII. The system would have 
been an open-source, ultra-high resolution, wide-bandwidth dual-pol spectrometer to be used on 
the world’s largest radio telescopes. 

 
1.3 FUNCTIONAL REQUIREMENTS 

 
● CASPER spectrometer support 

○ ZCU111 board must be made to support the CASPER spectrometer and the DSP 
libraries that it is dependent on. 

● Migen 
○ Must be able to auto-generate HDL from CASPER modules, create a corresponding 

Vivado project and generate a bitstream targeting the ZCU111 
● Spectrometer 

○ Parameterized inputs allow users to quickly configure the application for different 
use cases 

The Xilinx board made to successfully support the CASPER spectrometer is main objective of this 
project. The plan to move to a newer toolflow that does not rely on MATLAB/Simulink, is 
dependent on this requirement. Part of moving to the newer toolflow includes writing support for 
DSP libraries. 
Migen must automatically generate HDL code reflecting implemented CASPERized modules. It 
should create a Vivado project for a user to manually inspect/easily modify what it has created and 
automatically generate a bitstream targeting the ZCU111. It should also output a mapping of its 
instantiated registers for PYNQ. 
Parameterized input allows for a more user-friendly interaction between the user and application. 
The applications should be able to be configured so that certain parameters can be enabled or 
disabled depending on what the user wants to do with the application. This means that the user 
should be able to configure data such as visualization. 

 
1.4 NON-FUNCTIONAL REQUIREMENTS 

 
● Backwards compatibility 

○ The ability to still use MATLAB/Simulink and existing CASPER Toolflow along 
with Migen to program the board. 

● Open source  
○ Anyone can use our code in their application. 

● IEEE Standards 
○ 211-1997TM IEEE Standard Definitions of Terms for Radio Wave Propagation 
○ 1241-2010TM IEEE Standard of Terminology and Test Methods for Analog-to Digital 

Converters 
○ 802.3TM IEEE Standards for Ethernet 

 
CASPER operates entirely under the GNU General Public License V2.0. This grants the use of the 
source code to anyone for commercial or private use. This also means anyone has the right to 
modify and/or distribute the code, however CASPER accepts no liabilities or warranties on said 
source code.  
 
Open source allows other developers to continue unofficial work on the current project, or use the 
knowledge/code from our project as a code base for other similar projects. 
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IEEE has several standards related to our project, since we intend this project to be used outside of 
our own personal use; it's important for our project to meet IEEE standards for easier use in the 
public domain. The IEEE Std 211-1997TM standard outlines terms and definitions that should be 
used when discussing Radio Wave Propagation [5]. Since, the spectrometer instrument we intend 
to build will interpret electromagnetic waves, any terms used to describe this instrument will 
adhere to this standard. The IEEE Std 1241-2010TM standard outlines terms, definitions and test 
methods involving Analog-to Digital Converters (ADCs) [6]. The ADC on the boards will need 
testing, we’ll need to ensure it is tested up to industry standards. Any references to the ADC will 
used this standard as a guide. The IEEE Std 802.3TM standard outlines proper protocols involved in 
setting up a various speed of an Ethernet connection [7]. Our board support package requires a 10 
Gbps Ethernet interface, so following the IEEE protocols for this portion of our project will help 
guide us to a working interface. 
 

2. System Design & Development 
 
2.1 DESIGN PLAN 
 
Our design plan involved designing an ADC, spectrometer, and ethernet module on the ZCU111, in 
order to properly port an existing CASPER spectrometer. The board infrastructure was designed 
using Migen and PYNQ. The ADC, spectrometer, and ethernet modules were all derivations of 
existing CASPER cores and applications. These cores were ported and upgraded to work with the 
Zynq Ultrascale+ architecture on the ZCU111 board. Migen was used as an experimental tool to test 
whether it would be a viable option to replace the existing CASPER toolflow. PYNQ was ported to 
the ZCU111 with interfaces to the three modules in order to provide software access each modules 
configuration and status registers. Finally, the GUI in Jupyter Notebooks provided an interface for 
the entire spectrometer application, which would have allowed us to configure various parameters 
in our spectrometer and display data from throughout the system. More detail regarding the 
design’s various modules, interfaces and the overall system’s architecture can be found in the 
following sections. 
 

2.2 DESIGN OBJECTIVES 
 
As stated throughout this report, the overarching goal of our project was to port an existing 
CASPER spectrometer with dependent modules (ADC & 10Gbit Ethernet) along with additional 
features such as a graphical interface to view captured and filtered data. 
 
Expected tasks: 

1. Porting of the CASPER spectrometer instrument and dependent libraries to the Xilinx 
ZCU111 evaluation platform.  

a. General board support 
b. Ethernet interface 
c. ADC interface 

2. Migrating the current CASPER Toolflow to use Migen, an open source python library for 
generating and building gateware projects. 

3. Support for Xilinx PYNQ infrastructure, which will interface to existing CASPER Python 
libraries. 

4. Documentation of project for future users: source code, gateware, and firmware 
descriptions. 
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Additional task: 
1. Wideband full stokes parameterized spectrometer (polarimeter) for radio astronomy 

applications, targeting the Xilinx Zynq RFSoC platform. 

 
2.3 SYSTEM CONSTRAINTS 

 
● CASPER spectrometer support 

○ ZCU111 board must be made to support the CASPER spectrometer and the libraries 
it is dependent on. 

● Migen 
○ Must be able to auto-generate HDL from CASPER modules, create a corresponding 

Vivado project and generate a bitstream targeting the ZCU111 
● Spectrometer 

○ Parameterized inputs allow users to quickly configure the application for different 
use cases 

● GUI (GNURadio) 
○ The board must be able to communicate with the GUI using an interface. 

● Backwards compatibility 
○ The ability to still use MATLAB/Simulink and existing CASPER Toolflow along 

with Migen to program the board. 
● Open source  

○ Anyone can use our code in their application. 
● IEEE 

○ 211-1997 IEEE Standard Definitions of Terms for Radio Wave Propagation 
○ 1241-2010 IEEE Standard of Terminology and Test Methods for Analog-to Digital 

Converters 
○ 802.3 IEEE Standards for Ethernet 

● Time 
○ Roughly 6-8 hours expected per week, per team member from beginning of 

December 2018 to end of April 2019 

 
2.4 DESIGN TRADE-OFFS 
 
Trade-offs were made when during the design process we chose to use Xilinx specific IP cores in 
our ethernet and ADC modules, focused on the use of Migen to interface between each 
subcomponent, and using Jupyter Notebook as our GUI. By choosing to use Xilinx IP and not solely 
using existing CASPER IP for our block designs we reduce the boards that our project can be ported 
to. This trade-off decreases the time to develop because the Xilinx IP can just be added without 
much modification, but reduces the effectiveness of our overall project in CASPER’s open-source 
environment. By using Migen we trade-off existing known solutions such as Vivado to interface and 
compile each module together for a new test environment. Migen potentially reduces development 
time if successful because our project can be defined and written in Python which is easier to 
understand than VHDL. A trade-off of this is unknown compilation and import issues that could 
arise from using Migen. By using Jupyter Notebook we maintain the open-source goal of the 
project, but it isn’t the most performant solution. 

 
2.5 ARCHITECTURAL AND BLOCK DIAGRAMS 
 
Figure 1 outlines a simple, high-level conceptual view of how our spectrometer could be used in a 
real-world setting. 
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Figure 1. Conceptual Sketch 

 
Figure 2 represents our final architecture for the entire system, which was described in detail in 
section 2.1 Design Plan. 
 

 
Figure 2. System Architecture 
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Figure 3 is a functional block diagram that outlines a high-level view of how data flows throughout 
the system. The ADC and 1 GbE “Yellow Blocks” represent actual peripherals on the ZCU111 RFSoC. 
The “Green Blocks” represent CASPER DSP library blocks that are implemented in the existing 
Simulink/MATLAB-based Toolflow. 
 

 
Figure 3. Functional Block Diagram 

 

2.6 MODULES, CONSTRAINTS, AND INTERFACES 
 
ADC Module 
As a quick introduction, the ADC module that our team developed utilized all eight ADCs onboard 
the ZCU111 to sample RF signal and output I & Q (in-phase and quadrature) data streams to the 
spectrometer application described below.   
 
To explain in more detail, our ADC design, built in Vivado 2018.2, was built to deliver a sampling 
bandwidth of 0 to 100 MHz. The ADC module was designed to sample this 100 MHz bandwidth at a 
sampling frequency of 256 MHz to provide slight over sampling of the desired spectrum. This 
oversampling allows for filters (spectrometer application) to better handle the I & Q data streams 
being outputted from the ADC module by allowing a bit of headway in bandwidth. Our team’s 
module, as shown in Figure 5 below, when compared to the original TRD (Figure 5) has had its 
Direct Memory Components (DMA) and all related IP cores removed. All of this architecture 
originally was used to interface between Xilinx’s TRD & Data Converter GUI. As mentioned above, 
our spectrometer application inputs I & Q data streams instead of pulling captured sample data 
from memory. Our team also had no use for the onboard DACs and therefore removed those 
components as well to reduce the footprint during implementation.  
 
The below Vivado block diagram (Figure 4) is from the original TRD that interfaces with the Xilinx 
provided Data Converter GUI. This GUI allowed our team to use its pre-built features to quickly 
customize and test the ZCU111’s ADCs.  
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Figure 4. Xilinx ADC Targeted Reference Design  

 
From this given TRD, our team stripped out unneeded components such as DMA & DAC 
interfacing, to reduce the footprint needed to implement said design onto the FPGA. The goal of 
our ADC Vivado design was to sample a 100 MHz spectrum produced by a noise generator 
outputting a 2 GHz signal. This generated signal will be captured at a sampling frequency of 256 
MHz. Our design, featured below as Figure 5, shows our purpose-built ADC design. This design 
utilized all 8 ADCs by passing I & Q data streams straight to the spectrometer application.  
 

 
Figure 5. Sdmay19-41 ADC Vivado Design 
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Spectrometer Module 
The spectrometer application takes digitized in-phase and quadrature (I/Q) sinusoidal components 
from two ADC’s operating at 256 MHz. These are converted from real and imaginary data streams 
to one complex data stream for each ADC. These streams are then fed into a Polyphase Filterbank 
Finite Impulse Response filter (PFB FIR filter), which divides the signal into parallel 'taps' then 
applies finite impulse response filters (FIR) with a Hamming windowing function. The output of 
this block is still a time-domain signal. The Biplex FFT accepts two independent parallel inputs or 
‘pols’, and transforms the time-domain signals to frequency domain bins/channels for each pol. 
Together, the PFB FIR filter followed by an FFT, makes up a Polyphase Filterbank [8]. The 
power_vacc and crosspower_vacc blocks take the power of each complex pol or a combination of 
pols (cross-power) and integrates over a time related to the length of the vector and the size of its 
output, which outputs the full Stokes parameters representation of the polarization state of an 
electromagnetic wave [8]. The vacc_output block packetizes the spectrum and creates an 8-bit data 
stream for the 1 GbE block. The spectrometer design, its corresponding DSP blocks and their 
parameters can be seen in more detail in Figure 6 below. 
 

 
Figure 6. Spectrometer Application design 

 
1 GbE Module 
The 1 GbE module is the main data transfer module for the entire project. It will output the 
resulting 8-bit data stream from the spectrometer application to any device connected to board. 
The main components of this module are the Zynq PS, UDP module, MAC module, and 1G/2.5G 
PCS/PMA. The Zynq PS is the processing system for the ZCU111. It provides the reset and system 
clock signals for the rest of the components in the module. The UDP module is exactly that. It is 
responsible for packaging the data following the Transport layer protocol. This module is also 
responsible for receiving data and unpacking it. The MAC module is responsible for handling the 
addressing of the board and implementing the rest of the Data-Link layer protocol. It must transfer 
data appropriately from the UDP module to the PCS/PMA module and from the PCS/PMA module 
to the UDP module. The PCS/PMA module is responsible for handling the physical layer of the 
ethernet stack. Figure 7 below is our implementation of this module. Each component is 
highlighted with a number next to it in the order discussed above. 
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Figure 7. Ethernet Module 

 
GUI Module 
The GUI consists of three main parts: 

● A Python server (On the board itself) 

● An interactive GUI (On the board itself) 

● A non-interactive GUI (can be any computer on the same network as the board) 
The Python server will start by accessing the board’s PYNQ Overlay, and use PYNQ’s “recv”/“send” 
channel to communicate with the DMA’s AXI4-Stream interface. The server will then communicate 
with interactive GUI, waiting for its connection and requesting a configuration file (JSON), if none 
is received the board will work with its default settings, else the server will use the AXI4-Lite 
interface to send the configuration data. Once the board is configured (or not), the server will 
sample from the board using the “recv” channel that connects with the AXI4-Stream interface and 
then send the data to the interactive display for plotting, while waiting for new configuration files. 
The non-interactive display will wait for the server to start and will only receive data and plot it on 
the display. The data will move between the server and the clients (displays) by using sockets. 
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Interfaces 
The ADC, Spectrometer, and 1 GbE modules were all designed to inherit from a base Migen 
module. This base module featured a common Wishbone streaming interface on both the input 
and outputs. This would allow for ease of swapping out actual modules with Source/Sink testing 
modules that would allow each individual component to be properly unit testing by feeding in a 
corresponding source and verifying the expected output. This interface would also be used to 
stream data in and out of DMA from the programmable logic with a Wishbone-to-AXI4-Stream 
bridge. From here, the PYNQ software could easily generate test signals to write to DMA and 
confirm that data at various parts in the design are correct by reading from DMA. 
 
The base Migen module that the ADC, Spectrometer, and 1 GbE modules inherited also featured a 
CSR bus and an CSR-to-AXI4-Lite bridge. The CSR bus is a low-bandwidth, resource-sensitive bus 
implemented by Migen/Litex, which was designed for accessing the configuration and status 
registers of cores from software. Each module could instantiate its own configuration and status 
registers, which would be automatically added to a bank; this bank would be connected to the CSR 
bus and bridged to AXI4-Lite interfaces exposed by the PYNQ base overlay. This allowed PYNQ to 
write/read to the configuration/status registers for each respective module, since any registers and 
address space attached to an AXI4-Lite interface would be mapped into memory. The Migen/Litex 
build environment that we created would output a CSR mapping of the registers in a python 
dictionary, which could be imported into the PYNQ base overlay. He wrote functions that would 
create a PYNQ generic IP class from each modules mapping. This would expose a corresponding 
module’s registers with friendly names in order to read/write from/to them easily, which replaced 
referencing them via the interfaces base address and the registers corresponding offset. This 
matched the PYNQ functionality of how Xilinx’s own IP cores could be managed. 
 
These interfaces can be seen in relation to the rest of the system’s architecture in Figure 2 above. 

 
3. Implementation 
 
3.1 IMPLEMENTATION DIAGRAM, TECHNOLOGIES, AND SOFTWARE 
 
ADC Module 
The ADC subcomponent that our team worked on was derived from Xilinx’s Targeted Reference 
Design (referred to below as TRD). This TRD was designed to work with Xilinx’s Data Converter IP 
which allows quick interaction & configuration access to the ADCs & DACs onboard the RFSoC 
ZCU111. The TRD was used in tandem with a Xilinx provided Graphical User Interface (GUI) to 
verify custom system parameters via loopback tests. The data converter GUI is dependent upon 
LabView by National Instruments. All HDL, block diagram, and logic development work were 
conducted in Vivado 2018.2. External hardware that was used during the development process 
included Xilinx’s RFSoC ZCU111, a 100 MHZ low pass filter, a combination of 1.2 & 1.4 GHz band pass 
filters, noise generator, & spectrum analyzer. Software used during development included PYNQ 
and VHDL.  
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Spectrometer Application 
The spectrometer application was derived from a number of different sources. Our industry 
consultant, Jack Hickish, provided us with a Polyphase Filterbank-based (PFB) Simulink 
spectrometer application that he originally designed for the Allen Telescope Array in Northern 
California using the existing CASPER Toolflow [11]. In order to determine the proper DSP settings 
for our spectrometer, we modified an interactive Jupyter Notebook [12] originally created by Danny 
Price as a supplemental tutorial for his paper: Spectrometers and Polyphase Filterbanks in Radio 
Astronomy [8]. Once our spectrometer design was completed, Xilinx/MATLAB System Generator 
generated the corresponding HDL code for the spectrometer application. This generated HDL code 
was wrapped and instantiated inside of a Migen module. 
 
Ethernet Module 
The technologies used in implementation of the ethernet subcomponent of our design are the 
existing CASPER IP for ethernet design. These VHDL source files were able to be imported into the 
software used in implementation. They included a MAC protocol block, a UDP protocol block, an 
instance of a MicroBlaze core, and certain loopback testing blocks to aid in troubleshooting. The 
software used in implementation of the ethernet subcomponent include Vivado for synthesis and 
implementation of the sources for our ZCU111 FPGA and common Linux networking utilities used 
for troubleshooting and testing. Vivado was key in both importing the existing CASPER IP and 
interfacing it with design components updated for the ZCU111. The Linux network utilities 
(tcpdump, ping, etc.) allowed for monitoring of the ZCU111’s network traffic and ensuring that 
packets are sent and received properly. 
 
GUI Module 
One of the technologies used for the implementing the GUI module was a PYNQ Z1, using a Xilinx 
provided FIR filter IP core, Zynq 7000 PS IP and Direct Memory Access IP. The board was 
synthesized using Vivado with these IPs. The next technology used Jupyter Notebooks, which 
comes with PYNQ on the board. Libraries used in Jupyter Notebooks were matplotlib, NumPy, 
socket, Thread, ipywidgets and pickle. 

 
3.2 RATIONALE FOR CHOICES 
 
ADC Module 
As stated in the “ADC Module” portion of 3.1, the Xilinx provided Targeted Reference Design (TRD) 
was chosen by our team to be the platform we build from due to its prior validation and 
encouragement of use by Xilinx. By providing the team with a fully functional baseline 
implementation of an interface to the ADCs & DACs, this platform allowed our team to verify 
custom system parameters to insure they would produce the desired sampling bandwidth and data 
output. 
 
Vivado 2018.2 was chosen as our development version for a few reasons. 1) 2018.2 was the latest 
version of Vivado at the time our project started and 2) 2018.2 included hardware support for the 
RFSoC ZCU111. 
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Spectrometer application 
This spectrometer application mentioned in the previous section was able to be modified to meet 
the constraints of the 100 MHz bandwidth spectrometer we were targeting for this project. The 
Jupyter Notebook also described in the previous section allowed us to quickly create a test signal, 
feed it through a PFB spectrometer, and in real-time tweak the parameters for the PFB Finite 
Impulse Response frontend, and Fast-Fourier Transform (FFT) backend of the spectrometer 
application. These parameters included the number of taps, number of channels, type of 
windowing-function and integration period described in the original Jupyter Notebook [12]. After 
these parameters were chosen, we consulted again with Jack Hickish as well as Alan Wilson-
Langman to verify and implement the spectrometer using CASPER’s Simulink DSP libraries. The 
System Generated HDL code was wrapped and instantiated inside of a Migen module along with 
various configuration/status registers in order to control the spectrometer from software via PYNQ. 
 
Ethernet Module 
The choice made to use existing CASPER IP for ethernet was made so that the project would be 
more portable and fit better into CASPER’s open-source environment. It was also done in an 
attempt to make development of the ethernet subcomponent easier as rather than rewriting VHDL 
for each part of the entire ethernet stack only minor changes should have had to be made. Using 
Vivado was an obvious choice because the ZCU111 is a Xilinx FPGA and Vivado is the Xilinx design 
software. It is also the software used as a backend for CASPER’s current toolflow. The Linux 
network utilities were used instead of a third-party application like Wireshark because they are 
easier to setup and run and came installed on the computer used. 
 
GUI Module 
The GUI application’s main focus is to offer visualization through and from the board as well as 
easier access to configuring parameters through the PYNQ registers. The program isn’t integrated 
into the main spectrometer application but uses a server/client process to communicate with the 
board. This was initially done to make user interaction with the spectrometer application easier. 
Rather than manually setting registers, or typing in commands the GUI will allow all of this to be 
done via the ipywidgets module from Jupyter Notebooks.  

 
3.3 STANDARDS AND BEST PRACTICES 
 
ADC Module 
During development and testing, the IEEE Std 1241-2010TM: IEEE Standard of Terminology and 
Test Methods for Analog-to Digital Converters was followed. The procedures and guidelines stated 
in Std 1241-2010 ensures that our team followed proven metrics for testing and verifying the 
ZCU111’s ADCs. 
 
Ethernet Module 
The only applicable standard used in development of the ethernet subcomponent is IEEE 802.3 [7], 
which describes the protocols for setting up and operating various speeds and bandwidths of 
ethernet. This protocol was used as a guide to ensure we were completing all of the prerequisite 
components for an ethernet connection to the FPGA. It also was used to ensure our configurations 
and settings for our ethernet are correct. For the VHDL coding done it was all modifications to 
existing VHDL code and simply followed the existing formatting and styles of each file. 
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GUI module 
The application follows a PEP 8 standard - which is a coding style guideline for Python Code. PEP 8 
accounts for standardizing the use of comments, naming conventions, whitespace and 
programming recommendation. The application uses this standard to avoid consistency issues 
between two developers of different coding backgrounds. This standard also improves on layout 
and the readability of the code.  

 
4. Testing, Validation, and Evaluation 
 
4.1 TEST PLAN 
 
ADC Testing Methodology: 
The ADC sub-component will be tested in the following ways: 

1. The Xilinx provided TRD has been verified via the Xilinx Data Converter GUI application. 
Through this GUI, a loopback test was conducted via the DACs (noise generation at a 
certain specific frequency) & ADCs (sampling and FFT).  

2. Our ADC design will be verified via two methods: 
a. The Xilinx provided GUI to confirm the parameters of our target design. 
b. A 2 GHz noise generator in tandem with 100 MHz low pass filter feeding a sinusoid 

into the ADCs which will stream out I & Q data that, when feed into a spectrum 
analyzer, should produce the inputted sinusoid. 

 
Spectrometer Testing Methodology: 
The spectrometer sub-component was planned to be tested in the following ways: 

1. Create a Jupyter Notebook to simulate and verify the DSP parameters necessary for 100 
MHz spectrometer design 

2. Simulate in Simulink by generating white-noise, injecting a signal and feeding the samples 
to the fully implemented spectrometer design made with CASPER’s Simulink/MATLAB 
DSP libraries 

3. Read/write the input/output data for the spectrometer component from/to DMA using 
PYNQ: 

a. Generate a sampled signal using NumPy in PYNQ, write to DMA, read from DMA 
in hardware and feed to spectrometer HDL  

b. Write the spectrum to DMA in hardware, read spectral data from DMA in PYNQ 
and display plot to verify 

Due to time constraints, the first two methods of testing were only performed. This was because 
the third required a working DMA IP core inside of our ZCU111 PYNQ base overlay. Louis was able 
to demonstrate a functioning DMA IP core based on a FIR filter example application on the PYNQ-
Z1 board but ran out of time to port this core to our base overlay. 
 
1 GbE Testing Methodology: 
The testing plan for the ethernet subcomponent was as follows: loopback testing to ensure that a 
basic implementation of the ethernet operates with transmit and receive, a MicroBlaze core is 
added and tested to complete the functionality of CASPER’s existing implementations of ethernet, 
and the subcomponent would then be integrated with the rest of the project and tested to ensure 
functionality is maintained. All of the testing is done manually through the use of network tools in 
the Linux development environment and iterations of the subcomponent with debugging registers 
and LED’s set up. The testing covers all functionality of the ethernet subcomponent including 
sample data testing. 
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GUI Methodology: 
The testing plan for the GUI subcomponent was as follows:  

1. Use a Jupyter Notebook from FPGA developer [13], with access to the DMA’s IP core, which 
itself was implemented with a Xilinx FIR IP core, writing a NumPy generated signal to the 
DMA and reading from the same DMA. 

2. Write to the GPIO control registers using the GUI control surfaces, and verify the GUI can 
write to control registers. 

3. Create a Jupyter Notebook to create threads to test communication between a client 
process and a server process.  

 
4.2 UNIT TESTING 
 
ADC Unit Testing: 
The unit tests planned for the ADC module involved a slightly modified ADC design that included 
DMA IP cores. This would enable the usage of a PYNQ overlay built to interface / configure / and 
feed data into & out of the ADCs memory registers. This PYNQ interface would allow for 
developers to have quick access to a predefined memory map that would hold offsets to specific 
internal ADC parameters. Using this defined memory map, our team would be able to capture data 
via the customized ADC cores, stream that data into DMA, and view the captured values via our 
team’s GUI.  
 
These tests were unable to be completed due to an incomplete DMA infrastructure in the PYNQ 
base overlay. This lack of completed technology hindered our interface into the system. The ADC 
parameter’s memory offsets were collected but not placed into our team’s main PYNQ overlay.  
 
Spectrometer Unit Testing: 
The spectrometer module was planned to be unit tested by utilizing the common Wishbone 
streaming interfaces with a Wishbone-to-AXI4-Stream bridge to the DMA core in the PYNQ base 
overlay. PYNQ could generate a sampled sinusoid using NumPy, which emulates the digitized 
samples that would come from the ADC core and write that data to DMA. The spectrometer 
module would read this data in from DMA and behave normally and write its respective data back 
to the DMA. PYNQ would then read this data out of DMA and display a plot of the data for us to 
carefully consider and ensure that the resulting information is in fact correct and what we 
expected. We were not actually able to perform this unit test as the DMA infrastructure in the 
PYNQ base overlay was not added. Louis was able to demonstrate a working DMA demo via PYNQ 
with a different hardware design but ran out of time to implement this infrastructure in our 
hardware design. The Migen/Litex infrastructure to support this sort of testing was implemented 
and ready to be integrated. 
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1 GbE Unit Testing: 
The initial testing done was to test whether an implementation of just the ethernet stack can 
transmit and receive data in a loopback setup. This was done using the CASPER IP to setup the 
ethernet subcomponent in a loopback manner and test whether it actually works by pinging the 
ZCU111 from our development environment. Further testing setup included pulling the clock signals 
to a counter and flashing an LED to ensure they are working and looking at the status registers for 
the various components to make sure they are also working. The next step in testing would be to 
add an instance of the MicroBlaze core and test that the previous functionality is maintained along 
with adding ICMP functionality, ARP requests, and DHCP. This would be done in the same fashion 
as the earlier tests with manual checking of network traffic and status LED’s and registers. The final 
testing of the subcomponent would be to integrate it with the other subcomponents in Vivado and 
Migen. This would be done by wrapping the subcomponent in a common interface to include as a 
block in a new Vivado project with each subcomponent included similarly. Each would be 
connected and tested to ensure previous functionality is maintained along with the new 
functionality of taking data from the spectrometer and transmitting it to the development 
environment. 
 
GUI Unit Testing: 
The initial testing was done using a Jupyter Notebook project found on FPGAdeveloper., this 
project implemented two FIR Filters, one using python libraries and another implemented using 
Xilinx IP core. NumPy was then used to generate signals that will be passed to both filters and the 
times compared. The next step was to test each process, server and client. The server component 
was tested by using the FIR hardware implementation with NumPy, generating signals passing 
them to one server thread and the other a client thread waiting to verify that data. The Client 
process was tested by verify control surfaces, set certain values-based input. The next step was to 
use these control surfaces with a client process to connect to a server process, which would then 
write to GPIO control registers.   

 
4.3 INTERFACE TESTING 
 
The AXI4-Lite/CSR interfaces were tested by instantiating various configuration and status 
registers in the Spectrometer module as well as a ‘test module’. This test module included a wide 
range of different possibilities in order for us to spot any mistakes in the functionality of the 
interfaces/bridges. These two modules registers were automatically added to CSR banks which 
hooked up to each modules respective CSR bus. Each modules CSR bus was bridged to a 
corresponding AXI4-Lite interface exposed by the PYNQ base overlay. We demonstrated that each 
of these interfaces and register accesses worked by reading and writing to each module’s registers 
in PYNQ, also by hooking a configuration register up to the board GPIO LEDs and a status register 
up to the board’s GPIO dip switches and push buttons. For a couple weeks, we had to debug 
problems with these interfaces, which mostly came from a lack of documentation, lack of examples 
on Migen/Litex’s CSR-to-AXI4-Lite bridge, and a misunderstanding of the underlying functionality 
of Xilinx’s AXI Interconnect IP. In the end, he still had problems where the interface could only 
properly read/write to every 4th, 32-bit register, probably resulting from CSR’s word addressing and 
AXI4’s byte addressing. He was able to mitigate this issue by making a workaround that 
instantiating a dummy register of size’ 128-desired_reg_size’ after the instantiation of the desired 
register. His CSR mapping dictionary simply ignored these dummy registers before exporting.  
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The GUI’s socket interface was tested by creating two threads in Jupyter Notebooks that would 
simply attempt to send and receive data between one another and verify a client process was able 
to connect to a server process. From there the next test created two threads, with a client process 
sending data to a server process, with access to PYNQ, and wrote to GPIO LEDs using 
configuration registers mentioned above.  

 
4.4 SYSTEM INTEGRATION TESTING 
 
We were able to confirm that the automated Migen/Litex build environment with common base 
Migen modules and a functioning PYNQ Base Overlay he created functioned properly by the 
testing described in the Interface Testing section above. This demonstrated a number of system 
components and their proper integration: a functioning Migen base module with configuration 
interface, functioning interface bridges to the PYNQ base overlay, a functioning PYNQ image and 
PYNQ base overlay (excluding DMA IP core), and PYNQ properly running a Jupyter Notebook 
server on the processing system. 
 
Had the ADC core and 1 GbE cores been completed, they would have been wrapped in a Migen 
module and connected via the common Wishbone streaming interface. Had the DMA IP core been 
successfully implemented in our PYNQ base overlay, we would have integrated the ADC and 
spectrometer modules (after proper unit-testing), generated a sinusoid in the lab using a signal 
generator, and fed this signal to the ADC’s. We would have streamed the output of the 
spectrometer module directly to DMA and used PYNQ to display a plot of the spectrum (frequency 
vs power [dB]). We would have been able to verify a spike in power at the exact frequency of the 
lab-generated sinusoid. We would have integrated only the spectrometer and 1 GbE modules 
together and generated a sampled sinusoid using NumPy in PYNQ and streamed the data over the 
Wishbone interface as an input into the spectrometer module. We would have then used python 
on a lab computer connected to the same network as the ZCU111 to deconstruct the UDP packets 
and display a plot of the spectrum (frequency vs power [dB]). We would have been able to verify a 
spike in power at the exact frequency of the PYNQ/NumPy generated sinusoid. We would then 
have moved on to the following procedure described in the next section. 

 
4.5 VALIDATION AND VERIFICATION 
 
The functionality of the entire integrated system could have been validated by first feeding a lab-
generated sinusoid to the ADC’s and using python on lab computer connected to the same network 
as the ZCU111 to deconstruct the UDP packets and display a plot of the spectrum (frequency vs 
power [dB]). We would have been able to verify a spike in power at the exact frequency of the lab-
generated sinusoid. The final, ultimate test would have been to use our noise-generator to generate 
white-noise and inject a lab-generated sinusoid into this signal. Repeating the procedure described 
above, if we would have been able to see a clear spike in power at the exact frequency of the lab-
generated sinusoid, then the spectrometer would have been shown to function properly according 
to our client, CASPER. 
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4.6 EVALUATION 
 
The ADC portion of this senior design project had a few different sub tasks that needed to be 
verified and evaluated. The first thing that needed to be verified was the Xilinx provided Targeted 
Reference Design to ensure that the ZCU111’s ADC & DAC components were operational. This 
evaluation consisted of performing a loopback test by generating an output signal at a certain 
frequency (shown below as Figure 8), running that signal through a series of bandpass filters, and 
reading in that signal through the ADCs. After many trials at different frequencies, our team was 
confident that our RFSoC ZCU111’s RF oriented components were functional. These tests were run 
with the Xilinx Data Converter GUI Tool. After this series of tests, this TRD & Data Converter GUI 
were used to test our ADC design’s target parameter values to verify that these values produced the 
expected and desired results. 
 

 
Figure 8: TRD Loopback Test (DAC Generation) 
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Figure 9: TRD Loopback Test (ADC Capture w/ FFT) 
 
The hardest part of the ethernet module was deciding what implementation to go with and actually 
getting it successfully implemented. We were able to finally import the proper CASPER IP needed 
and implement a basic design. At this point in the project we were able to confirm that the project 
is able to be successfully implemented on the board. We are still currently testing the loopback 
interface as timing issues between each of the clocking sources involved are numerous. 
 
We were able to confirm that the automated Migen/Litex build environment with common base 
Migen modules and a functioning PYNQ Base Overlay he created functioned properly by the 
testing described in the Interface Testing section above. This demonstrated a number of system 
components and their proper integration: a functioning Migen base module with configuration 
interface, functioning interface bridges to the PYNQ base overlay, a functioning PYNQ image and 
PYNQ base overlay (excluding DMA IP core), and PYNQ properly running a Jupyter Notebook 
server on the processing system. 
 
The GUI was able to read data from a DMA IP core on the PYNQ-Z1, and plot the data for display. 
The Server process was tested using threading, for verification of communication with a client 
process. Once the communication was established between the board and the work station, simple 
plots were made reading from the PYNQ-Z1’s DMA IP core, then said data was also sent over socket 
to the workstation client process for verification and plotting. 
 

5. Project and Risk Management 
 
5.1 TASK DECOMPOSITION & ROLES AND RESPONSIBILITIES 
 
PYNQ 

1. Create and test a ZCU106, then ZCU111 PYNQ image 
2. Port generic ZCU104 base overlay to ZCU106 and verify functionality 
3. Port generic ZCU106 base overlay to ZCU111 and verify functionality 
4. Design base overlay for ZCU111 to be adapted from generic 
5. Test configuration and status register access from Migen-generated module code via CSR-

to-AXI4-Lite bridge 
6. Create PYNQ function that will inherit Default IP class to have common attributes as 

Xilinx IP in PYNQ, this function would parse CSR register map and define a register map in 
PYNQ 

7. Implement ZCU111 base overlay for application that exposes modules/registers with friendly 
names 

8. Create and test a PYNQ-Z1 base overlay. 
 
Build Environment (Migen/Litex) 

1. ZCU106/111 platform support 
a. Create Migen platform file for mapping of inputs/outputs to physical FPGA pins 
b. Create simple test application that blinks LED’s verifying board can be targeted 

2. Base Migen module for CASPER 
a. Create a base Migen module that all other CASPER modules will inherit from with 

common Wishbone stream interfaces for data and configuration/status interface 
b. Make a test module that instantiates wide-range of configuration and status 

registers 
3. Bridging Migen design with PYNQ base overlay 
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a. Create TCL script that will instantiate PYNQ base overlay wrapper inside of a new 
Migen-generate Vivado project 

b. Design an interface architecture that allows access to registers created in Migen 
from PYNQ 

c. Design interface architecture that allows ease of unit testing each Migen module 
via PYNQ (DMA) 

d. Implement CSR-to-AXI4-Lite bridge for register access 
e. Create configuration/status register map python dictionary for PYNQ 

 
ADC  

1. Verify TRD via the Xilinx provided Data Converter GUI Tool 
a. Perform loopback test using onboard ADCs & DACs 

2. Remove unused logic from Xilinx TRD 
a. Correctly extract DMA IP cores 
b. Remove DAC synchronization logic 

3. Split out I & Q data from TRD 
a. Split I & Q data streams from each ADC core 
b. Remove unused logic (IQ merging, multiplexed output, etc.) 
c. Verify correct bus width for I & Q streams to ensure they properly connect to the 

spectrometer application 
4. Collect memory offsets for important ADC system parameters to be used within PYNQ 

 
1/10 GbE core 

1. Porting 10GbE application 
a. Port existing 10GbE application from CASPER 
b. Upgrade IP to new board 

2. Investigation into alternatives to 10GbE 
a. Example Xilinx implementations of 10GbE core 
b. Determine whether slower ethernet such as 1GbE is acceptable 

3. Porting 1GbE applications 
a. Use existing 1GbE applications to base new project off of 
b. Import CASPER IP in place of Xilinx IP that is restricted 

4. Testing 1GbE implementation 
a. Loopback testing 
b. MicroBlaze core implementation testing 
c. Sample data testing 

5. Wrap 1GbE in common interface 
a. Use interface developed in Migen 

 
Spectrometer application 

1. Adapt Jupyter Notebook [12] that simulates PFB-based spectrometer in order to determine 
DSP parameters for targeted spectrometer 

2. Consult with Jack Hickish/Alan Wilson-Langman and modify example spectrometer [11] 
application for our targeted spectrometer 

3. Rework vacc_output (packetizer) block to match 1 GbE data stream 
4. Generate HDL code via Xilinx/MATLAB System Generator 
5. Create Migen Spectrometer module that instantiates system generated HDL code 
6. Expose all input/outputs needing to interface to ADC or 1 GbE module 
7. Instantiate all relevant configuration and status registers related to spectrometer 

application 
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GUI 

1. Use Jupyter Notebook to simulate a sine wave graph (using dummy data) to verify 
visualization through Jupyter notebooks. 

2. Adapt Jupyter Notebook’s ipywidgets to configure GUI parameters. 
3. Use Python json module to adapt a configuration file that can be initialized/modified by 

the user. 
4. Integrate the graph view with the PYNQ’s python libraries so that it reads and displays data 

from accessing PYNQ’s registers. 
5. A client process to server process communication using sockets to transmit data from 

board to workstation. 
 
Roles and Responsibilities 
Brian Bradford - FPGA/DSP Engineer 

● Build Environment (Migen/Litex) 
● PYNQ tasks: 1-7 
● Spectrometer application 

Louis Hamilton - FPGA Engineer and GUI developer 
● GUI design & implementation 
● PYNQ task: 8 

Jared Danner - FPGA Engineer 
● ADC Design & Implementation 
● ZCU111 Migen Platform File 

Nick Knuth - FPGA Engineer 
● 1/10 GbE core 

Vishal Joel - GUI Developer and FPGA Engineer 
● GUI design & implementation 

 
5.2 PROJECT SCHEDULE – GANTT CHART (PROPOSED VS ACTUAL) 
 
Figure 9 shows our proposed Gantt chart at the end of the first semester of senior design. Figure 10 
is the actual Gantt chart at the end of this semester of senior design. The largest reason for the 
discrepancies between the two is unforeseen issues that arose during implementation and testing. 
These issues are highlighted in detail in the following section to explain the large extensions in 
time to each component. 
 

 
Figure 9. Proposed Gantt Chart 
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Figure 10. Actual Gantt Chart8 

 
5.3 RISKS AND MITIGATION (POTENTIAL VS ACTUAL) 
 
For the ADC portion of the project, our team’s initial goal was to create a functional ADC 
component that, when utilizing all eight ADC cores, could sample at rates high enough to measure 
the Hydrogen-Emission line. This was not achieved due to lack of knowledge of how complex these 
systems were and how significant prior experience was to the completion of the component. 
Although this hindered the success of the ADC design, the team did spend a large amount of time 
researching other similar designs from industry/universities to gain a better understanding of what 
we needed to complete to achieve our goals. 
 
The ethernet module portion of the project incurred many unforeseen issues. The first issue to 
come up was our own fault for assuming the porting of the existing CASPER implementations for 
10GbE ethernet would be simple. Once we were finally able to specify the correct board settings in 
Vivado after importing the CASPER project Vivado immediately signaled outdated IP. Upon 
upgrading the IP to their current versions, it still threw an issue. The CASPER implementation used 
a Xilinx IP core that was unsupported on the ZCU111’s Ultrascale+ architecture. This was a major 
issue because we do not have the license for the 10GbE IP core that was necessary for the existing 
implementation. We made the decision at this point to pivot to 1GbE. We first used an example 
implementation that Xilinx had and attempted to get that to work. This ran into the same issues 
before where we do not have the license required to implement the design. From this point we 
began to try to merge what we could from the Xilinx example project and older existing CASPER 
implementations. This began with looking at a SNAP board project that was somewhat similar to 
our goal. We attempted to use this, but the MAC and UDP blocks from this project were too 
different to our desired implementation due to larger differences in architecture. At this point we 
started to use a VCU118 implementation. This implementation was much more similar to the 
Ultrascale+ architecture and allowed me to import the MAC and UDP blocks and begin testing. 
This came with its own unforeseen timing issues due to difference in standards from the ZCU111, 
VCU118, and CASPER’s toolflow in MATLAB. 
 
Initially the plan was use to GNURadio for the GUI application, however due to time and functional 
constraints discussed in 2.3, the team decided to use Jupyter notebook directly from the PYNQ 
image. This is because PYNQ was later installed onto the FPGA board, which comes with support 
for Jupyter notebook out of the box as well as other Python modules that allow visualization and 
configuring data. Therefore, instead of going through an extra process of getting GNURadio 
installed and communicating with the board, the team agreed on using Jupyter Notebook and other 
python modules directly. 
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5.4 LESSONS LEARNED 
 
Overall, our team has learned that FPGA Design and implementation can take a significant amount  
of time due to many different variables that can result in unforeseen problems, therefore it is 
extremely difficult to plan out realistic timelines. 
 
When reflecting on work done for our senior design project, there are many valuable takeaways 
spanning from gained technical knowledge to newly established industry relationships. From our 
time working on the Vivado designs, we have gained immense knowledge of the internal operations 
and effects that a proper component can have on both itself and other components. Going beyond 
the hardware, our team became very proficient with the Vivado block diagram interface (version 
2018.2) and how to modify block designs at both the high and low levels. 
 
We also gained experience with working on new technology that may be beneficial to future 
projects. Using new software tools is a valuable experience to have especially when transitioning to 
new working environments. We learned a lot about the challenges of adapting to new software and 
the risks that come with working on new implementations of that software. We also learned a lot 
about the need for risk management when using new technologies. 

 
6. Conclusions 
 
6.1 CLOSING REMARKS 
 
Given the time constraints, the fact that FPGA design and implementation often present 
unforeseen problems, and that a majority of our team would be considered rookie FPGA Engineers 
at best: our team was not able to fully implement and test a 100 MHz spectrometer on the Xilinx 
ZCU111 platform. We demonstrated that CASPER could potentially migrate to a fully open-source 
toolflow in the future by creating an automated build environment using Migen/Litex and PYNQ. 
We also provided the leg-work for the creation of a CASPER ZCU111 ADC and 1 GbE core that can 
easily be taken over by more FPGA-experienced CASPER members to finish their implementation. 

 
6.2 FUTURE WORK 
 
All relevant code and documentation for this project will be truly open-source and made available 
in a repository on Brian Bradford’s GitHub. He plans to email CASPER’s mail list and inform its 
members about its location the what work was accomplished. There are around half a dozen or 
more CASPER members that are actively trying to build instruments with the Xilinx ZCU111 RFSoC 
platform, they will most likely take the work done on the ADC and 1 GbE core (supplemented with 
this report) and fully implement them within CASPER’s current toolflow for the rest of the 
community to use. Brian Bradford plans to give a Migen/Litex and PYNQ infrastructure talk at this 
year’s CASPER workshop in August to inform members about the work done and the potential to 
use Migen/Litex and PYNQ in a future CASPER toolflow. 
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